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In this chapter, we present theoretical formalisms for the study of wave dispersion in damped
elastic periodic materials. We adopt the well-known structural dynamics techniques of modal anal-
ysis and state-space transformation and formulate them for the Bloch wave propagation problem.
First, we consider a one-dimensional lumped parameter model of a phononic crystal whereby two
masses connected by springs and viscous dashpot dampers compose the unit cell. We then extend
our analysis to the study of a two-dimensional phononic crystal, modeled as a dissipative elastic
continuum, and consisting of square inclusions periodically distributed within a host material. For
our damping model, we consider both proportional damping and general damping. Our results
demonstrate the effects of a range of damping levels on the frequency band structure for two dis-
tinct damping scenarios. In particular, we reveal two intriguing phenomena: branch overtaking and
branch cut-off. The former may result in an abrupt drop in the relative band gap size, and the latter
implies an opening of full or partial wavenumber (wave vector) band gaps. Following our frequency
band structure analysis, we illustrate the concept of a damping ratio band structure.

I. INTRODUCTION

Phononic crystals are elastic materials whereby the mi-
crostructure geometry or constituent material phases are
distributed periodically in space. With careful size scal-
ing and choice of the constituent material phases and
their spatial distribution within the periodic unit cell,
phononic crystals can be designed to classically control
the propagation of acoustic/elastic waves in a predeter-
mined manner. In doing so, these modern materials have
opened up a technological frontier in acoustic and elas-
tic devices [1–3]. Bloch theory [4] provides the underly-
ing mathematical framework for obtaining the fundamen-
tal wave propagation characteristics in phononic crystals.
Through this theory, it is possible to obtain a relation-
ship between frequency and wavenumber (wave vector)
— this relationship is referred to as the frequency band
structure. In many cases, one or more of the constituent
materials are damped (i.e., dissipative), a good exam-
ple is viscoelastic materials which are often used to form
the matrix phase in phononic crystal composites. The
presence of damping results in temporal and spatial at-
tenuations of the elastic waves as they freely “progress”
through the periodic media [5]. It is therefore necessary
to establish rigorous theoretical formalisms for damped
Bloch wave propagation, which is the objective of this
chapter.

To follow is a brief survey of various studies in the
literature that dealt with damping in infinite (and fi-
nite) periodic materials (and structures). In an early
study focusing on one-dimensional (1D) discrete mass-
spring-dashpot models, Mead [5] considered structural
(velocity independent) damping as well as a hypotheti-
cal type of damping associated with what was referred
to as “damped forced modes”. Viscous damping was
treated later on with various types of dissipative con-
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stitutive models. Mukherjee and Lee [6], for exam-
ple, provided a dispersion relation using a complex elas-
tic modulus to model viscoelasticity in a 1D laminated
medium. Tassilly [7] on the other hand considered vis-
cous damping which was mathematically incorporated in
the governing equations as a separate term representing
velocity-dependent damping forces. He analyzed 1D pe-
riodic beam structures suspended on an elastic founda-
tion, which is a unique configuration that produces no
acoustical branches in the frequency spectrum. In other
studies, often the focus has been on finite structures or
there was little consideration of the broad effects on the
band structure characteristics (e.g., Refs. [8–10]). Some
studies explicitly investigated the band structure using
viscoelastic damping models, although limited to a fixed
frequency [11, 12] or to low frequencies [13]. Wang et
al. [14] analytically studied dispersion in 1D viscoelas-
tic lattices with a model applicable to a wide frequency
range. Merheb et al. [15] also provided a study that was
not limited to certain frequencies, using the finite dif-
ference time-domain method in addition to experiments.
Yet both these studies did not provide a detailed analysis
of the broad effects of damping on the dispersion band
structure. In Ref. [15], the conclusions were focused on
the spatial attenuation/decay effects. Recently, Lee et
al. [16] proposed a method whereby effective medium
theory is employed in conjunction with the transfer ma-
trix method to analyze 1D damped periodically layered
materials.

In Refs. [17] and [18], the concept of Bloch modal anal-
ysis has been introduced for the study of the dynamics
of periodic media. The concept was first employed for
the purpose of model reduction for band structure cal-
culations [17], and was later utilized for the study of
the effects of proportional (Rayleigh) damping on the
band structure and phase and group velocity dispersion
relations [18]. In this chapter, we further utilize Bloch
modal analysis towards investigating the effects of both
stiffness- and mass-proportional damping on the disper-
sion relation. Our primary objective, however, is to
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broaden our treatment of damped periodic media by de-
veloping a theoretical formalism, based on state-space
transformation, for the study of systems with general
damping. For both the proportional damping and general
damping problems, we consider 1D and two-dimensional
(2D) viscously damped phononic crystal models and ex-
plicitly show the effects of damping on the frequency
versus wavenumber wave vector curves. In doing so, we
highlight two intriguing phenomena — branch overtaking
and branch cut-off. In branch overtaking the presence of
damping causes the higher branches in the band structure
to drop in frequency at rates that exceed the drop rates
for lower branches, thus causing the overtake. Branch
cut-off refers to a state whereby a dispersion branch does
not cover the entire first Brillouin zone, thus creating a
full or a partial band gap with respect to the wavenum-
ber (wave vector) as opposed to the frequency. Finally
we correlate our frequency band structure analysis with
the corresponding representation of the damping ratio-
wavenumber (wave vector) relations, i.e., damping ratio
band structure.

In this work, we consider constant damping parame-
ters in our treatment of viscous damping. However, since
we assume harmonic motion in time, the viscous dissipa-
tion force, fvd is frequency-dependent, i.e., fvd = Ĉu̇ =
λ(ω)Ĉu, where u denotes the displacement vector, Ĉ
denotes the damping matrix, λ(ω) denotes a frequency-
dependent coefficient, ω denotes frequency, and the dot
symbolizes differentiation with respect to time. This is
in contrast, for example, to what is known as structural
damping which generates a frequency-independent force
fsd = iµK̂u, where K̂ denotes the stiffness matrix, µ
is a damping parameter, and i =

√
−1. Reference to

the frequency-dependence of damping is often made to
the damping matrix itself as opposed to the damping
forces. Incorporating frequency-dependence in the Ĉ ma-
trix, i.e., Ĉ = Ĉ(ω), is a subject for future research.

The layout of the chapter consists of two parts: Sec.
II covers a discrete model and Sec. Sec. III covers a
continuous model. In each section, we present the theory
and subsequently provide numerical examples for both
proportional and general damping.

II. DISCRETE MODEL

II.1. Theory

We begin our study of damped periodic materials by
considering a simple 1D lumped parameter lattice model
which we use to demonstrate the basic characteristics of
dispersive behavior due to damping. Our system, which
is by definition infinite in extent, is constructed by ap-
pending copies of the two-mass unit cell of Fig. 1 along
the line of motion. The lattice spacing is denoted by a.

The set of equations that describe the motion of the

FIG. 1. Discrete model of phononic crystal: two-mass unit
cell.

two masses, m1 and m2, in the unit cell are

m1ü
j
1 + (c1 + c2)u̇j1 + (k1 + k2)uj1

− c2u̇j2 − k2u
j
2 − c1u̇

j−1
2 − k1uj−1

2 = 0,
(1a)

m2ü
j
2 + (c1 + c2)u̇j2 + (k1 + k2)uj2

− c2u̇j1 − k2u
j
1 − c1u̇

j+1
1 − k1uj+1

1 = 0,
(1b)

where uj` represents the displacement of mass ` in the jth
unit cell.

We assume a plane wave solution

uj`(x, κ, t) = ũ`e
iκx+λt, (2)

for mass ` at the jth lattice point, where ũ`, κ, x, and
t denote the complex wave amplitude, wavenumber, po-
sition, and time, respectively. It should be noted that x
is not continuous, reflecting the discreteness of the ma-
terial model. Moreover, because the unit cell resides at
each lattice point, the wave may only be sampled at those
points, i.e., x = {−ja, . . . ,−a, 0, a, . . . , ja} (j is an inte-
ger). Due to the periodicity of the solution, the following
statement holds for the displacement of mass ` at neigh-
boring lattice points.

uj+n` (x+ na, κ, t) = uj`(x, κ, t)e
inκa, (3)

In Eq. (3), the integer n = 0 for the present unit cell,
n = 1 for the subsequent unit cell, and n = −1 for the
previous unit cell. Substituting Eq. (3) into Eqs. (1a)
and (1b) yields two homogeneous equations for u1 and
u2, respectively, i.e., in matrix form

M̂ü + Ĉu̇ + K̂u = 0, (4)

where M̂ denotes the mass matrix and u = [u1 u2]T

[(·)T denotes the transpose operation]. The M̂, Ĉ, and

K̂ matrices are explicitly defined as follows:

M̂ =

[
m1 0
0 m2

]
,

Ĉ =

[
c1 + c2 −(e−iκac1 + c2)

−(eiκac1 + c2) c1 + c2

]
,

K̂ =

[
k1 + k2 −(e−iκak1 + k2)

−(eiκak1 + k2) k1 + k2

]
.
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Applying the time derivatives, Eq. (4) becomes

(λ2M̂ + λĈ + K̂)u = 0, (5)

For Ĉ = 0, the familiar eigenvalue problem emerges.
With eigenvalue λ2 = −ω2, the dispersion relation is
easily obtained. In the case of the phononic crystal
represented by the unit cell in Fig. 1, the undamped
frequency-wavenumber relation is

ωs(κ) =

√
(k1 + k2)(m1 +m2)∓

√
[(k1 + k2)(m1 +m2)]2 − 8(1− cosκa)k1k2m1m2

2m1m2
, s = 1, 2

where s refers to the mode number, which in the context
of a dispersion band structure is the branch number.

II.1.1. General damping

For the case of general damping (where the damping

matrix Ĉ is nonzero, Hermitian, but nonproportional to
M̂ or K̂) it is not possible to set up a Bloch eigenvalue
problem in the usual way because of the presence of the
viscous damping term. We therefore resort to convert-
ing the second-order problem to a first-order problem
through a state-space transformation [19, 20]

Â ˙̂y + B̂ŷ = 0. (6)

where

Â =

[
0 M̂

M̂ Ĉ

]
, B̂ = diag

[
−M̂ K̂

]
, ŷ =

[
u̇ u

]T
.

For convenience, we define rm = m2/m1, rc = c2/c1,

rk = k2/k1, and subsequently write the M̂, Ĉ, and K̂
matrices in terms of only m2, c2, and k2 respectively,

M̂ = m2M̂o = m2

[
1/rm 0

0 1

]
,

Ĉ = c2Ĉo = c2

[
1 + 1/rc −(e−iκa/rc + 1)

−(eiκa/rc + 1) 1 + 1/rc

]
,

K̂ = k2K̂o = k2

[
1 + 1/rk −(e−iκa/rk + 1)

−(eiκa/rk + 1) 1 + 1/rk

]
.

Utilizing this notation and dividing by m2, the state-
space matrices Â and B̂ become

Â =

[
0 M̂o

M̂o βĈo

]
, B̂ = diag

[
−M̂o ω2

0K̂o

]
,

where ω0 =
√
k2/m2 and β = c2/m2. We assume a so-

lution for Eq. (6) of the form ŷ = ȳeγt. The damped
frequency band structure can now be obtained by solv-
ing the associated eigenvalue problem. The eigenvalues,
which appear in complex conjugate pairs, are solutions
to the characteristic equation

γ4 + aγ3 + bγ2 + cγ + d = 0,

with

a =
(1 + rc)(1 + rm)β

rc
,

b =
2(1− cosκa)rkrmβ

2 + (1 + rk)(1 + rm)rcω
2
0

rcrk
,

c =
2(1− cosκa)(rc + rk)rmβω

2
0

rcrk
,

d =
2rmω

4
0(1− cosκa)

rk
.

The form of the solution resembles that from structural
dynamics, except, in the context of Bloch wave propa-
gation, the terms are dependent upon the wavenumber
(wave vector).

γ(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, 2 (7)

In Eq. (7), the real part is the negative of the prod-
uct of the wavenumber-dependent damping ratio, ξs(κ),
and the resonant frequency, ωs(κ); the imaginary part
is the wavenumber-dependent frequency of damped wave
propagation ωd,s(κ) for mode s. Corresponding to each
eigenvalue, the frequency of damped free wave propaga-
tion and the associated damping ratio are simply

ωd,s(κ) = Im[γs(κ)], s = 1, 2

ξs(κ) = − Re[γs(κ)]

Abs[γs(κ)]
, s = 1, 2.

Since each member of a conjugate pair describes the
same wave with only the direction of propagation in op-
position, no information is lost in considering only the
member with Im[γs(κ)] > 0.

II.1.2. Proportional (Rayleigh) damping

The advantage of the state-space formulation is its ap-
plicability to a generalized viscous damping matrix; how-
ever, the size of the eigenvalue problem doubles. For the
special case of Rayleigh damping (see Ref. [21] for a dis-

cussion on the limitations of this model), Ĉ is linearly

proportional to M̂ and/or K̂, i.e.,

Ĉ = pM̂ + qK̂ (8)



4

FIG. 2. Stiffness-proportional damping dispersion curves and damping ratio band diagrams.

where p, q ≥ 0 are scaling parameters. Naturally, p, q = 0
corresponds to the undamped case. In circumstances of
proportional damping, the size of the problem need not
be doubled through a state-space transformation. In-
stead, we can now employ the concept of Bloch modal
analysis [18] which allows us to linearly transform the
model degrees of freedom u to a set of Bloch generalized
degrees of freedom, v, that is, u = Φv. Unlike in Ref.
[17] in which the aim is model reduction, here the matrix
Φ is formed using a set of mass-normalized Bloch vectors
obtained by solving the standard undamped eigenvalue
problem at the current κ point.

Substituting Eq. (8) into Eq. (5) yields

[λ2M̂ + λ(pM̂ + qK̂) + K̂]u = 0. (9)

Utilizing the orthogonality condition that the Bloch vec-
tors exhibit with respect to M̂ and K̂, the expansion
uncouples the equations in Eq. (9). This is done by sub-
stituting u(t) = Φv(t) into Eq. (9) and pre-multiplying
by ΦH [(·)H denotes the Hermitian transpose operation]

ΦH[λ2M̂ + λ(pM̂ + qK̂) + K̂]Φv = 0. (10)

Equation (10) simplifies to

[λ2I + λ(pI + qΛ) + Λ]v = 0, (11)

where Λ is a diagonal matrix of eigenvalues. Equation
(11) represents two uncoupled equations expressed in ma-
trix form. Analogous to the treatment of single degree-
of-freedom finite systems in structural dynamics, each of
these equations can be written in terms of the damping
ratio ξs(κ) and the undamped frequency ωs(κ),

[λ2s + 2ξs(κ)ωs(κ)λ+ ω2
s(κ)]vs = 0, s = 1, 2. (12)

Comparing Eqs. (11) and (12) gives

2ξs(κ)ωs(κ) = p+ qω2
s(κ). (13)

From Eq. (13), the damping ratio is derived explicitly

ξs(κ) =
1

2

[
p

ωs(κ)
+ qωs(κ)

]
, s = 1, 2.

Solving for the roots of Eq. (12), we get

λs(κ) = −ξs(κ)ωs(κ)± ωs(κ)
√
ξ2s (κ)− 1, s = 1, 2

(14)
which, for the underdamped case, [ξs(κ) < 1] is by defi-
nition equal to

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, 2.

Hence, the wavenumber-dependent frequency of damped
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FIG. 3. Mass-proportional damping dispersion curves and damping ratio band diagrams.

wave propagation is

ωd,s(κ) = ωs(κ)
√

1− ξ2s (κ)

= ωs(κ)

√
1− 1

4

[
p

ωs(κ)
+ qωs(κ)

]2
, s = 1, 2.

For the undamped case [ξs(κ) = 0], the frequency of
the sth branch of the original undamped band structure
[i.e., ωs(κ)] is recovered. For ξs(κ) > 1, the medium
is overdamped and temporal oscillations do not exist.
The medium is critically damped when ξs(κ) = 1. It
is noteworthy that this theory is analogous to the well-
established modal analysis (modal decomposition) theory
for proportionally damped finite structures [19, 20].

II.2. Results

To examine our formulation, we select a specific set
of material constants for our two-mass model as follows:
rm = 9, rc = 1/2, rk = 1, and ω0 =

√
k2/m2 = 150rad/s.

II.2.1. Effects of different types of damping

We consider three different damping cases – stiffness-
proportional, mass-proportional, and general damping –
and, for each case, present both the frequency band struc-
ture and the damping ratio band structure for various
levels of damping intensity. In all the figures concerned
with this two-mass system, the frequency of the acous-
tical branch, ωd,1, is represented by a solid curve, while
the frequency of the optical branch, ωd,2, is represented
by a dashed curve. In addition, the undamped curves are
always colored blue and the damped curves are colored
otherwise.

In Fig. 2, we show the results for the stiffness-
proportional damping case (i.e., p = 0 and q > 0).
It is apparent from Fig. 2a that the optical frequency
branch is more affected by the damping than the acous-
tical frequency branch; indeed, as most apparent in Fig.
2c, the optical branch’s corresponding value of damping
ratio increases more rapidly than that of the acoustical
branch. As the level of damping increases, the curve for
ωd,2/ω0 flattens out and eventually transitions from be-
ing concave down to concave up before vanishing. The
downward concavity of ωd,1/ω0 remains the same, but, as
shown in Fig. 2b, the range of κa over which ωd,1/ω0 > 0
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FIG. 4. General damping dispersion curves.

decreases as the damping intensifies.

The results for mass-proportional damping (i.e., p > 0
and q = 0) are shown in Fig. 3. Comparing Fig. 3a
with Fig. 2a, it is clear that mass-proportional damp-
ing has the opposite effect on the acoustical and opti-
cal frequency branches than that induced by stiffness-
proportional damping. The acoustical frequency branch
is affected more by this type of damping and accord-
ingly the corresponding damping ratio values increase
more rapidly. Unlike in Fig. 2a, the concavity of both
curves remains constant while, like in Fig. 2a, the range
of κa over which propagation is possible (ωd,1/ω0 > 0)
decreases. In this case, low-frequency waves possessing
longer wavelengths (κa→ 0) are the first to become over-
damped.

Emerging from the state-space transformation ap-
proach, Fig. 4 presents the frequency band structure for
a general damping model for various values of β/ω0. A
comparison of Figs. 2 and 4 reveals a similarity in the dis-
persive effects of stiffness-proportional damping and the
present condition of general damping. These similarities
in the dispersion band structure can be explained by the
mathematical similarities between the K̂ matrix and the
Ĉ matrix due to the common placement of springs and
viscous dampers in Fig. 1. Ĉ and qK̂ are structurally

similar being full matrices, while Ĉ and the diagonal pM̂
are structurally dissimilar. As for stiffness-proportional
damping, in Fig. 4, ωd,2 is more susceptible to the in-
fluences of damping than is ωd,1. The optical frequency
branch flattens out before changing concavity (not shown
in Fig. 4).

It is noteworthy that the band structure alterations
described above induce both quantitative and qualita-
tive changes to the group velocity dispersion curves. For
example, it is possible for the group velocity of some
branches to switch from positive to negative as a result
of damping [18].

II.2.2. Branch overtaking and branch cut-off

In the results presented for the damped mass-spring
periodic chain, we can observe two intriguing phenom-
ena that emerge due to the presence of damping: branch
overtaking and branch cut-off. Branch overtaking takes
place when higher branches in the band structure drop
in frequency at rates that exceed the drop rates for lower
branches, thus causing the overtake. A branch cut-off
refers to a state whereby a dispersion branch does not
cover the entire first Brillouin zone, thus creating a par-
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FIG. 5. Frequency (solid lines) and wavenumber (dashed lines) band gaps as a function of damping level for the (a) stiffness-
proportional, (b) mass-proportional, and (c) general damping cases considered.

tial band gap with respect to the wavenumber (or wave
vector for a multi-dimensional problem) as opposed to
the frequency.

In Figs. 2a and 4a, we observe cases of branch over-
taking. In particular, we observe in each case that the
location of the optical branch shifts down the frequency
domain at a much faster rate than the acoustical branch
as the intensity of damping is increased. For example, in
Fig. 4a the optical branch is located below the acoustical
branch when β/ω0 = 0.3. Damping and the higher drop
rate of the optical branch causes the band gap to decrease
in size at an increasing rate. This is quantitatively illus-
trated by tracking the relative size of the band gap with
respect to its central frequency as a function of damp-
ing intensity, as illustrated in Fig. 5. Clearly the relative
band gap size rate drops for the stiffness-proportional and
general damping cases. For the mass-proportional damp-
ing situation, a greater rate of descent for the acoustical
branch compared to the optical results in an increasing
band gap and, therefore, no branch over-taking. In some
cases (as reported in Ref. [18]), if the overtake takes place
on an optical branch, a band gap can drop in size even
more abruptly.

In Figs. 2b, 3a, and 4b, we observe another damping-
induced phenomenon in the frequency band structure.
We observe, that when the level of damping exceeds a
certain value, the acoustical branch gets cut off in the
wavenumber domain, i.e., it does not span the entire
first Brillouin zone. Moreover, since the optical branch
eventually disappears in the cases of Figs. 2a and 4b
(due to the presence of a high level of damping), we
get a wavenumber band gap, i.e., a wavenumber range
where waves are prohibited from propagation. This phe-
nomenon is clearly analogous to the well-known concept
of a frequency band gap. In the case presented in Fig.
3a, we observe a partial wavenumber band gap as the
optical branch remains. In Fig. 5, we track the opening
of the relative width of the wavenumber band gap for the
three damping cases studied.

The damping-induced branch-overtaking and branch
cut-off phenomena clearly present opportunities for de-

sign, building on already existing methodologies at the
unit cell level [22, 23] and/or at the combination of the
unit cell and structural levels [24].

III. CONTINUOUS MODEL

III.1. Theory

In this section, we consider a continuous phononic crys-
tal governed by

∇ · σ = ρü, (15)

where σ is the stress tensor, ρ is the density, and u =
{ux, uy, uz} is now used to denote the displacement field.
The constitutive behavior is treated phenomenologically
assuming linear and isotropic elastic response and viscous
damping,

σ = CK : ∇Su + CC : ∇Su̇, (16)

where CK is the conventional elasticity tensor, CC is the
viscous damping tensor, and ∇S denotes the symmetric
gradient operator, that is,

∇Su =
1

2
[∇u + (∇u)T]. (17)

Substituting Eq. (16) into Eq. (15) yields

∇ ·CK : ∇Su +∇ ·CC : ∇Su̇ = ρü. (18)

We will assume that the unit cell is composed of two or
more material phases, and that the material-to-material
interfaces are ideal. Equation (18) has a Bloch solution
of the form

u(x,κ, t) = ũ(x)eiκ·x+λt, (19)

where ũ(x) is the periodic displacement Bloch amplitude
function with the periodicity of the medium, x is the
position vector, and κ is the wave vector. Similar to
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discrete counterpart in Eq. (2), periodicity enforces the
following identity

u(x + a,κ, t) = u(x,κ, t)eiκ·a.

Using Eq. (19), the spatial component of the displace-
ment gradient is

∇u = (∇ũ + iκ⊗ ũ)eiκ·x, (20)

where the symbol⊗ denotes the outer product. Similarly,
the velocity gradient is

∇u̇ = (∇ ˙̃u + iκ⊗ ˙̃u)eiκ·x. (21)

Substitution of Eqs. (17), (19), (20), and (21) into Eq.
(18) gives the strong form of the Bloch eigenvalue prob-
lem

∇ ·CK :

[
∇Sũ +

i

2
(κ⊗ ũ + ũ⊗ κ)

]
+∇ ·CC :

[
∇S ˙̃u +

i

2
(κ⊗ ˙̃u + ˙̃u⊗ κ)

]
= ρ¨̃u.

(22)

Applying the time derivatives, Eq. (22) becomes

∇ ·CK :

[
∇Sũ +

i

2
(κ⊗ ũ + ũ⊗ κ)

]
+ γ∇ ·CC :

[
∇Sũ +

i

2
(κ⊗ ũ + ũ⊗ κ)

]
= γ2ρũ.

(23)

Equation (23) can be discretized using a numerical
method. We will consider the finite element (FE) method
[17], but it should be noticed that the following treatment
of damping is independent of the specific choice the nu-
merical method. The discretization transforms the con-
tinuous Bloch displacement functions to discrete Bloch
displacement vectors, yielding

M̂¨̃u + Ĉ ˙̃u + K̂ũ = 0, (24)

and

[γ2M̂ + γĈ + K̂]ũ = 0, (25)

respectively. M̂, Ĉ, and K now denote the finite element
mass, damping, and stiffness matrices. In Eqs. (24) and
(25), the vectors are of size ne×1 and each of the matrices
is of size ne × ne where ne denotes the number of FE
equations.

For the undamped case, where Ĉ = 0, we realize that
γ = iω (hence u(x; t) = ũ(x)eiωt) and subsequently ob-
tain the familiar eigenvalue problem for undamped Bloch
wave propagation

[K̂− ω2M̂]ũ = 0.

On the other hand, if the second term in the left-hand-
side of Eq. (25) is nonzero, this prevents us from generat-
ing an eigenvalue problem in the usual way for calculating
the band structure.

III.1.1. General damping

To enable a formal eigenvalue analysis of a problem ex-
hibiting general damping, we transform Eq. (24) into the
state-space formulation consistent with Eq. (6). In this
case, the eigenvalue solution is wave vector-dependent:

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, . . . , ne. (26)

In the same manner as in the discrete case, we can extract
ξs(κ) and ωd,s(κ) from Eq. (26).

III.1.2. Proportional (Rayleigh) damping

As discussed earlier in Sec. II.1.2, a special case for a
phononic crystal damping model is proportional damp-
ing [18]. We will define the proportional viscous finite
element matrix similarly as given in Eq. (8), substitute
into Eq. (24), and subsequently obtain

M̂¨̃u + [pM̂ + qK̂] ˙̃u + K̂ũ = 0. (27)

As we did in the discrete case, we employ the concept
of Bloch mode expansion [17, 18] which allows us to lin-
early transform the model to a set of Bloch generalized
coordinates, ṽT(t) = [ṽ1(t) ṽ2(t) · · · ṽm(t)], i.e.,

ũ(t)(ne×1) = Φ(ne×m)ṽ(m×1)(t), (28)

where Φ is a Bloch modal matrix. In Eq. (28), m denotes
the total number of Bloch modes retained in the expan-
sion. We follow the same procedure as in Sec. II.1.2, and
utilize the orthogonality condition that the Bloch vectors
exhibit with respect to M̂ and K̂ at the current κ-point
to uncouple the governing equations. This is done by
substituting Eq. (28) into Eq. (27) and pre-multiplying
all terms by ΦH. Returning to Eq. (28), only as many
Bloch modes m need to be incorporated in the expan-
sion as the number of branches of interest in the damped
band diagram that is to be generated. The result is a set
of m uncoupled equations

¨̃vs + 2ξs(κ)ωs(κ) ˙̃vs + [ωs(κ)]2ṽs = 0, s = 1, . . . ,m.
(29)

where ṽs is the sth Bloch generalized coordinate and
ωs(κ) represents the wavenumber-dependent frequency
of undamped wave propagation (as in the discrete case).
In Eq. (29), ξs(κ) is the damping ratio of the sth branch
(out of a total of m branches) of the damped band struc-
ture at point κ and is defined as

ξs(κ) =
1

2

[
p

ωs(κ)
+ qωs(κ)

]
, s = 1, . . . ,m. (30)

Applying the derivatives in Eq. (29) and solving for the
roots yields a similar expression as given in Eq. (14)

λs(κ) = −ξs(κ)ωs(κ)±ωs(κ)
√
ξ2s (κ)− 1, s = 1, . . . ,m.
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FIG. 6. Continuous model of phononic crystal with irre-
ducible Brillouin zone enclosed in red.

For the undamped case [ξs(κ) = 0], the frequency of the
sth branch of the original undamped band structure is
recovered. For ξs(κ) < 1, the medium is underdamped
at κ and propagating waves exhibit temporal decay in
time. Subsequently,

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, . . . ,m

and the wave vector-dependent frequency of damped os-
cillation is defined as

ωd,s(κ) = ωs(κ)
√

1− ξ2s (κ), s = 1, . . . ,m (31)

which is essentially the frequency of the sth branch of
the damped band structure at point κ. For ξs(κ) > 1,
the medium is overdamped at κ and temporal oscillations
cannot exist. The medium is critically damped at κ when
ξs(κ) = 1.

III.2. Results

In this section, we examine the behavior of a continu-
ous model of both a proportionally damped and a gen-
erally damped phononic crystal. We use the finite el-
ement method to discretize the spatial domain in both
cases. For the proportionally damped case we solve Eq.
(29) and proceed to calculating ξs(κ) and ωd,s(κ) by sim-
ply post-processing the resulting undamped band struc-
ture data using Eqs. (30) and (31), respectively. For
the generally damped case we use the state-space formu-
lation, solve for λs(κ), and extract ξs(κ) and ωd,s(κ).
Both damping-type formulations are applicable to three-
dimensional models. However, for ease of exposition we
present results for a 2D model under plane strain condi-
tions. In our example model, a square lattice is consid-
ered with a bi-material unit cell consisting of a centrally
located square inclusion, as shown in Fig. 6. The filling
ratio is 0.3086. The material phase for the matrix (de-
noted by subscript “1”) is chosen to be compliant and
light while the phase for the inclusion (denoted by sub-
script “2”) is stiff and dense. In particular, a ratio of

Young’s moduli of E2/E1 = 20 and a ratio of densities
of ρ2/ρ1 = 2 are chosen. A Poisson ratio of ν = 0.34
is assumed for both phases. The unit cell finite element
mesh consists of 9×9 uniformly sized four-node bi-linear
quadrilateral elements. The path along the symmetry
points, Γ→ X →M → Γ, bordering the irreducible Bril-
louin zone is sampled into ninety-seven κ-point steps. In
the results, we refer to the degree of proportional damp-
ing using the scaling parameters p and q. The shear Lamé
constant for material phase “1” is denoted µ1. For the
general damping case we perturb a stiffness-proportional
damping model by multiplying each of the Lamé con-
stants by a different scalar, thus breaking the propor-
tionality of the damping matrix to the stiffness matrix.

Figure 7a,b shows the frequency band structure (re-
stricted to real wave vectors) for the undamped case,
where p, q = 0, a proportionally damped case with pa-
rameters p = 0 and q = 0.05, and a generally damped
case whereby a proportionally damped model with pa-
rameters pscaled = 0 and qscaled = 0.05 is perturbed by
replacing µ by µdamp = 1.4µ and λ by λdamp = 0.6λ in
the damping matrix C. The damping ratio correspond-
ing to each mode, as a function of κ, is shown in Fig.
7c,d. We observe that for the proportionally damped case
considered the location of the branches in the frequency
domain drop with damping, and do so at an increasing
rate as the branch number increases. The damping ra-
tio diagram shown in Fig. 7c resembles the frequency
band structure in shape. Furthermore, the locations of
the curves in Fig. 7a drop, and in Fig. 7c rise, with in-
crease in the value of q (not shown). We also studied the
case where p 6= 0 and q = 0 (not shown). Here, the band
structure away from the Γ-point experiences very small
shifts, whereas at and near the Γ-point the downward
shift in frequencies is dramatic, and this is due to sharp
increases in ξs within this neighborhood. In fact, with a
small increase in p, the value of the damping ratio at and
near the Γ-point exceeds unity, i.e., exceeds the critical
damping level beyond which there is no temporal oscil-
lations. We therefore focus on a nonzero q while keeping
p = 0. The response of the considered generally damped
case follows a similar trend to the proportionally damped
case with deviations in certain regions such as between
the M - and Γ-points, especially for the sixth branch. The
damping ratio diagram for both cases also differ consider-
ably especially at the high branches. Even though λdamp

was decreased at the same rate (40%) as µdamp was in-
creased in the general damping matrix, we observe that
the level of overall damping in the band structure has in-
creased compared to the nominal stiffness-proportionally
damped case. This suggests that damping in shear has
a more significant effect on the band structure than lon-
gitudinal damping. This conclusion is confirmed by con-
sidering the opposite case where µ has been replaced by
µdamp = 0.6µ and λ by λdamp = 1.4λ, the results of which
are presented in Fig. 7b and d.



10

FIG. 7. Frequency (a,b) and damping ratio (c,d) band structures for.

IV. CONCLUSIONS

We presented a formal treatment of the Bloch wave
propagation problem for viscously damped phononic
crystals. We first studied an infinite chain consisting
of two masses in the unit cell, then generalized to a
continuum model of a phononic crystal which was sub-
sequently discretized using the finite element method.
We considered both the general damping case and the
special case where the damping matrix is proportional
to the mass and/or stiffness matrices. In all our anal-
yses we presented the mathematical formulations gov-
erning the application of Bloch theory to a single unit
cell, and obtained the frequency band structure as well
as the wavenumber- (wave vector-) dependent damping
ratio band structure.

Our results show that damping in general alters the
shape of the frequency band structure. For the specific
case of proportional damping, we observed from the dis-
crete model results that the optical branch is more sen-
sitive to stiffness-proportional damping, while the acous-
tical branch responds more readily to mass-proportional
damping. The band gap shrinks or widens accordingly.
These alterations induce both quantitative and qualita-
tive changes to the group velocity dispersion curves. A
significant consequence is the possibility of transition of

the group velocity corresponding to some branches from
positive to negative as a result of damping [18].

Our results also revealed that when the damping is
significant it could lead to rather dramatic changes to
the frequency band structure (and hence the band gaps).
In particular, we observed the branch overtaking phe-
nomenon whereby the higher branches drop at a faster
rate than the lower branches, thus allowing for the possi-
bility of a branch overtake. We also observed, in the con-
text of general damping, the phenomenon of a wavenum-
ber (wave vector) band gap whereby in the case consid-
ered the acoustical branch experiences a cut-off, that is,
it no longer spans the entire first Brillouin zone.

The treatment of damping using modal analysis and
state-space transformation is common in the study of
the dynamics of structures [19–21]. In this paper, and
building on our earlier work [17, 18] we have extended
the application of these techniques to the study of the
dynamics of materials within the framework of Bloch
theory. Incorporation of damping in this context is nec-
essary as the newly emerging field of phononics – the sci-
ence of phonons and their manipulation for technological
applications – expands to incorporate a broader range of
constituent material phases exhibiting different levels of
dissipation. Since our formalisms revolve around the use
of the damping matrix C, we can fully utilize already
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established quantitative models of damping in the finite
structural dynamics literature [19–21]. Furthermore, the

presented formalisms are relevant to the study of Bloch
wave propagation in other types of dissipative periodic
media such as lossy photonic crystals [25–27].
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